The crystal structure and thermal expansion of the perovskite-type Nd0.75Sm0.25GaO3: powder diffraction and lattice dynamical studies

نویسندگان

  • A Senyshyn
  • A R Oganov
چکیده

The structure of Nd0.75Sm0.25GaO3 was studied by high-resolution powder diffraction methods using conventional x-ray and synchrotron radiation in the temperature range 85–1173 K. The GdFeO3 structure type was confirmed for Nd0.75Sm0.25GaO3 in the temperature region investigated and no structural transitions were observed. The cell parameters show a monotonic and anisotropic increase with temperature. The interatomic potential was fitted using the GULP code. Using this potential, a self-consistent approximation following the Debye model was constructed from the elastic constants of the crystals. The total phonon DOS, its projections onto atomic species, heat capacity Cv , Grüneisen parameter γ and thermal expansion coefficient α were considered in the framework of quasiharmonic lattice dynamics and the Debye model. The shape of the phonon DOS calculated from lattice dynamics differs significantly from the respected Debye DOS. The rare earth,gallium and oxygen atoms dominate in different frequency regions of the phonon spectrum. The heat capacity is well reproduced by the Debye model below 100 K, where acoustic phonons play an important role and above 800 K when the classical limit is reached. Predicted values of Grüneisen parameter and thermal expansion coefficients in the frame of the Debye model are ∼35% too low. Therefore, the thermal properties of Nd0.75Sm0.25GaO3 cannot be explained by acoustic phonons only and hence, Nd0.75Sm0.25GaO3 cannot be described perfectly as a Debye-like solid with respect to its thermodynamic properties. (Some figures in this article are in colour only in the electronic version) 0953-8984/04/030253+13$30.00 © 2004 IOP Publishing Ltd Printed in the UK 253 254 A Senyshyn et al

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal expansionc oefficient of Ln0.6Sr0.4Co0.2M0.8O3−δ (Ln=La,Nd,Sm and M=Fe,Ni,Mn) perovskite oxide

In this study, Thermal expansion coefficient (TEC) variation of Ln0.6Sr0.4Co0.2M0.8O3−δ (Ln=La,Nd,Sm and M= Fe,Ni,Mn) perovskite oxide have been evalouated. Different compounds have been prepared and thermal expansion coefficient have been meseaured in different temperature by means of dilatometer analysis. Structural parameters of compounds have been  determined by X-ray diffraction and Field ...

متن کامل

Crystal Structure and Lattice Parameter Investigation of La3+ Substituted CeO2 in LaxCe1-xO2-X/2 Synthesized by Solid-State Method

Lanthanum (La) doped Ceria (CeO2) has attracted considerable interest as a candidate material for thermal barrier coating (TBC) because of its low thermal conductivity and potential capability to be operated above 1250°C. In this study, La2Ce2O7 powder was synthesized through the ball mill method. The crystal structure of La3+ su...

متن کامل

X-ray peak broadening analysis in LaMnO3+δ nano-particles with rhombohedral crystal structure

In this work, structural and magnetic properties of LaMnO3+δ compound prepared by citrate precursor method and annealed in presence of oxygen are investigated. The structural characterization of LaMnO3+δ by X-ray powder diffraction and using X’pert package and Fullprof program is evidence for a rhombohedral structure (R-3c space group) confirmed by FTIR measurement. The magnetic measurements sh...

متن کامل

مطالعه فاز پروسکایت Ba(Co0.8Fe0.2)O3−δ دپه شده با کاتیون تانتالم

Perovskite structures including oxygen vacancies are the most important group of the oxygen preamble membranes. These membranes have potentially attractive applications in the membrane reactors for partial oxidation of methane. Doping Perovskite phase in order to increase the oxygen vacancies and oxygen permeation, besides Perovskite structure stability, has been the main approach of the recent...

متن کامل

Catalytic oxidation of toluene over LaBO3 (B= Fe, Mn and Co) and LaCo0.7B′0.3O3 (B′= Fe and Mn) perovskite-type

In this paper, LaBO3 perovskite type catalyst formulations were prepared by sol-gel auto combustion method using citric acid as the fuel. Activity of catalysts was tested in catalytic oxidation of toluene as a model of volatile organic compounds. LaCoO3 perovskite formulation showed the highest activity among LaBO3 (Fe, Mn and Co) perovskite catalysts. So, LaCoO3 perovskite based catalyst was s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004